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The entanglement of formation as well as the conditional entropy can be used to define
leaves in the state space, given by the linear superposition of their extremal points.
Examples, where these leaves can be found and can be used to calculate the entanglement
respectively the conditional entropy are presented. The definition of entanglement is
generalized to infinite systems and allows again to find a leaf structure. Finally we
remark on the additivity property of both expressions, offering a counter example to the
additivity of the conditional entropy.
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1. INTRODUCTION

The phenomenon of entanglement was already well known in the early stage
of quantum mechanics (Schroedinger, 1936). In the near past it has again gained
much interest of being a powerful resource in prospective quantum information
techniques. There exist several expressions to quantify entanglement, depending
what features should be described. One of them is entanglement of formation. It
turns out that this expression not only serves to measure the costs to produce the
entangled state (in the spirit of Bennetet al.(1996b) and Haydenet al.(2001) but
also imposes a structure on the state space of the composite system, decomposing
the state space into different leaves, a structure that we expect to be useful to
evaluate strategies in quantum encoding (Benatti, 1996). Nevertheless not many
examples have been studied so far. In this review we offer strategies to evaluate
such leaves, we collect the known results and add a few additional ones. We
also compare the structure of state space induced by entanglement with a similar
one, induced by the conditional entropy. This structure is somehow opposite to
the one induced by entanglement, but is not as rigged and especially does not
satisfy additivity with respect to tensor products, a property that is one of the open
questions in the theory of entanglement.
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2. ENTANGLEMENT OF FORMATION AND THE LEAF STRUCTURE
OF STATE SPACE

We consider our quantum system to be described by an algebra of operators
M acting on a Hilbert spaceH. To avoid topological subtilities we assume in this
chapter that the Hilbert space has finite dimensions. States overM are given by
density matricesρ such thatω(M) = TrρM . Entanglement of formation refers to
a subalgebraA ⊂M.

Definition 2.1. Given a subalgebraA ⊂M. We define the entanglement of the
stateω with respect to the subalgebraA by

E(ω,M,A) = inf
∑

i

λi S(ωi ) | A,

where the infimum is taken over all possible decompositionsω =∑i λiωi of the
stateω into states overM.

Remark. (i) A special example corresponds toM = A⊗ B, where usually the
algebraA is assigned to Alice andB to Bob. In this situation

E(ω,A⊗ B,A) = E(ω,A⊗ B, B),

but we have also more general imbeddingsA ⊂M in mind.
(ii) The entanglement of formation is a convex function ofω. With respect to

A it is monotonically increasing, with respect toM it is monotonically decreasing
(Narnhofer and Thirring, 1985).

(iii) Since the Hilbert space is finite the infimum is really achieved. Theωi

for which the infimum is achieved are called optimal decomposers.
The main observation that allows to impose a leaf structure on the state space

and also enables us to evaluate the entanglement for a larger set of states is the
following:

Theorem 2.1. Let f(ω) be a concave function onω. Let

F(ω) = inf
∑

i

λi f (ωi ),
∑

i

λiωi = ω.

Then the state space S decomposes into leavesLÃ , S= ∪ LÃ and F is a linear
functional on a leafLÃ , i.e.

F(λω1+ (1− λ)ω2) = λF(ω1)+ (1− λ)F(ω2), ω1, ω2 ∈ LÃ

Proof: From concavity it follows that the infimum is reached at extremal points,
i.e., pure states. Linear decomposition of superpositions of states can only be better
than the linear superposition of the decompositions, which makesF convex. Based
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on this observation different superpositions of one optimal decomposition can be
compared and this gives the result (Benattiet al., 1996a). Also we can remember
that as a convex functionF is the supremum over affine functionals, and these
affine functionals can be labeled in our situation by LÃ , lLÃ (ω) = F(ω) for ω ∈ LÃ ,
(Benattiet al., 2002).

We can collect some properties that these leaves have to satisfy.
(i) Let αg, g ∈ G be an automorphism group onM such thatαgA ⊂ A and

ω ◦ αg = ω. Let ω̄ belong to the leaf LÃ ω. Then also ¯ω ◦ αg ∈ LÃ ω.
(ii) We take pure statesσ1, . . . , σn and denote the corresponding vectors in

the Hilbert spaceH by |√σ1〉, . . . , |√σn〉. ¤

Theorem 2.2. Compatibility relation (Benatti and Narnhofer, 2001). We call
statesω1 andω2 compatible if they belong to the same leaf.σ1, . . . , σn are extremal
points of the same leaf if and only if∑

i

|γi |2S(|√σi 〉〈√σi )|A +
∑

i j

(γ j γ
∗
i |
√
σi 〉〈√σ j | + γi γ

∗
j |
√
σ j 〉〈√σi |)|A ln

×|√σi 〉〈√σi |A) ≤
〈∑

i

γi
√
σi |
∑

j

γ j
√
σ j

〉

×S

( |∑i γi
√
σi 〉〈

∑
j γ j
√
σ j

〈∑i γi
√
σi |
∑

j γ j
√
σ j 〉

∣∣∣∣∣
)

for all possibleγi ∈ C. h

The proof can be found in (Benatti and Narnhofer, 2001). It is based on
perturbation around the optimal decomposition together with an application of
Theorem 2.1.

As a special case we consider the valuesγ1 = 1, γ2 = ε all other γi = 0.
Then we can expand the inequality. Up to orderε it reduces to the equality

T r |√σ1〉〈√σ2|(ln |√σ1〉〈√σ1| − ln |√σ2〉〈√σ2|) = 0.

Up to second order inε an inequality remains, that is not much more transparent
than the general inequality. It is an open problem whether the above inequality
cannot be reduced to a smaller set ofγi , e.g., if the compatibility of all pairs of
pure states (γi = 0 for all but two elements) guarantees already that the pure states
generate a leaf. So far no counterexample is known, and in the next chapter we
will offer an example where the leaf is really found on the basis of this assumption.

3. FINITE DIMENSIONAL EXAMPLES

(A) The simplest example is provided byM = Mn ⊗ M0
k , whereMn is an

dimensional full matrix algebra andM0
k an abelian algebra of dimensionk. Then
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any stateω can be decomposed intoω =∑k
l=1 λlωl withωl a pure state onM0

k · ωl

can further be decomposed into pure states overMn. Therefore

E(ωM, Mn) = E(ω,M, M0
k ) = 0

and the state space consists only of one leaf, all pure states being compatible.
(B) We takeM = M2 andA = M0

2 = {σz}with the notation of Pauli matrices.
Every state overM2 corresponds to a density matrix inM2. We choose the special
statesω with ω ◦ α = ω, whereα is the automorphismασz = −σz, ασx = σx. If
|z1, z2〉 is an optimal decomposer so is|z2, z1〉. To every aboveω we can find an
appropriate pair of such states and can convince us that this pair satisfies the nec-
essary compatibility relation (Benattiet al., 1996a). Therefore the corresponding
leaf consists of the orbit underα of one state and further more the whole state
space can be covered by these leaves after rotation in thexyspace.

This example provides us with a possible strategy to search for optimal de-
compositions, though it is only applicable if we want to decompose a state with
good symmetry properties.

Assumeω ◦ αg = ω∀g ∈ G. We look for a pure state ¯ω such thatω =∫
dηgω̄ ◦ αg, i.e., we look for a state whose orbit under the symmetry group

generates the leaf. If the group is large the orbit might be large too, therefore
the compatibility condition (Theorem 2.2) might be too demanding on the many
ω̄ ◦ αg. Therefore we look for a subgroupH ⊂ G such that ¯ω ◦ αh = ω̄∀h ∈ H .
Therefore the orbit reduces toG | H and should be small enough to satisfy all
compatibility relations but large enough to generateω. In addition we have to
be aware that the leaf might be generated by several orbits. That this strategy
can be successful but that all possibilities we mentioned can be realized will be
demonstrated in the following example:

(C) We takeM = M3 andA = M0
3. The relevant group is the permutation

group which is of order 6. The statesω ◦ απ = ω are labeled by one parameter,
ω(eii ) = 1/3,ω(ei j ) = z for i 6= j and−1/6≤ z≤ 1/3 so that the state is positive.
For an optimal decomposition we need at least three states, at most nine. If three
states are sufficient, the pure state has to be invariant under a subgroupH ⊂ G, e.g.,
without loss of generality we take the permutations (2, 3). This fixes the possible
pure state uniquely depending on z. But it turns out (Benattiet al., 1996b, 1999)
that this decomposition is not always optimal. We have two bifurcation points
(Benattiet al., 2002; Terhal and Vollbrecht, 2000)−1/6 < z0 < 0 < z1 < 1/3.
This is a result of numerical analysis but can be made plausible by the following
observation:

For z= 0 the tracial state can be decomposed into eigenvectors ofM0
3, thus

one state corresponds to (1, 0, 0) and gives entanglementE(ω0) = 0. Forz= 1/3
the state is already pure and the corresponding vector is 1/

√
3(1, 1, 1)= ψ1/3. For

z= −1/6 it is easy to find thatψ−1/6 = 1/
√

2(1,−1, 0) is an optimal decomposer.
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Here the state is invariant under the groupH but not the vector, only its ray. It
is possible to pass continuously fromψ1/3 to ψ0 remaining a fix point ofH but
not fromψ0 to ψ−1/6. This explains that a bifurcation value has to occur. The
accurate value varies if we vary the concave functionf (ω) in Theorem 2.1 and
can therefore not be explained by general arguments. The bifurcation pointz1 is
of different nature. Here we do not break the symmetry ofH but we start to need
two orbits with varying weight. This bifurcation point can be found by a mapping
0 : M2→ M3; M0

2 → M0
3(

a c
c d

)
→
 a c/2 c/2

c/2 b/2 b/2
c/2 b/2 b/2

(a
c

)
→
 a

b/2
b/2

 .
Every decomposition of0(ρ) is again into density matrices of the above form and
satisfies especially thatS(0(ωi )) |M0

3
has the same monotonicity behavior with re-

spect to the relevant parameters asS(ωi ) |M0
2
. Therefore an optimal decomposition

over M2 can be mapped into an optimal decomposition overM3. Especially

01/
√

3(1,
√

2)= 1/
√

3(1, 1, 1), 01/
√

3(
√

2, 1)= 1/
√

6(2, 1, 1).

These two vectors combine in three-dimensional case to a leaf, but they also belong
to the leaf that is defined byω1/3 respectively to the leaf defined byωz0. Their orbits
under the permutation group generate the leaf for allωz, z0 ≤ z≤ 1/3 which can
be checked by comparing with a decomposition of just one orbit forz0 < z < 1/3.
This example is in support to the conjecture that a leaf is determined by the pairs
of its extremal points. (Compare the remark after Theorem 2.2.)

4. INFINITE ALGEBRAS

Though in quantum information theory normally one restricts oneself to finite
dimensional algebras it seems worthwhile to examine how increasing dimensions
might influence the structure and especially whether similar considerations also
give some insight when infinite algebras are imbedded in one another. In this
situation the first problem arises in the definition of the entanglement, qualitatively
and quantitatively, because pure states on infinite von Neumann algebras do not
exist.

(A) Let us first consider a simple imbedding: letA be a type II1 factor algebra
andα a free automorphism (therefore not an inner automorphism) withα2 = 1
andA imbedded into the algebraM = A1α Z2, i.e., the crossed product of the
algebraAwith the automorphismα and by the assumptions again a type II1 factor.
A physical realization is given withM the algebra of infinitely many fermions
andA the subalgebra of even polynomials in creation and annihilation operators
whereα is induced by some (a0+ a∗0). We can write elements ofM respectively
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of A conveniently as

M =
(

A1 A2

αA2 αA1

)
,

whereA1, A2 belongs toA, and A is imbedded intoM by demanding thatA2 = 0.
OnM we can define an automorphism ˆα

α̂M = α̂
(

A1 A2

αA2 αA1

)
=
(

A1 −A2

−αA2 αA1

)
,

so thatA is the fix point algebra under ˆα. Notice that the automorphismα can now
be implemented by either of the operators(

V 0
0 V

)
or

(
0 1
1 0

)
,

where for the first operatorV 6∈ A but the later operator belongs toM.
To find a definition for the entanglement let us recall the definitions in

the finite case: the entropy itself can be written (Narnhofer and Thirring, 1985)
as

S(ω) = sup
∑

k

λkS(ω | ωk), ω =
∑

k

λkωk,

where the supremum is taken over all possible decomposition and is reached for
every decomposition into pure states. The entanglement then reads

E(ω,M,A) = inf
M∑
i

µi sup
A∑
k

λki S(ωi | ωik).

Hereω =∑µiωi is decomposed into states overM whereasωi =
∑
λikωik

is decomposed into states overA. Every decomposition results from a positive
operator in the relative commutant of a representation in which the state is given
as expectation value with a vector

ω(A) = 〈Ä|5(A)|Ä〉 ωk(A) = 〈Ä|Qk5(A)|Ä〉,
whereQk ∈ 5(A)′, Qk ≥ 0. We can now replace the definition of the entanglement
by

E(ω,M,A) = inf
M∑
i

µi sup
A∑
k

inf
Ei

ωi (Qk)S(ωi (Ei (Qk)·)|ωi (Qk·))|A,

where we stay in a common representation for allωi . HereEi (Qk) is anωi pre-
serving completely positive map from5(A)′ into 5(M)′ and the supremum is
taken over all decompositions

∑
k Qk = 1 of operatorsQk > 0 ∈ (A)′. Therefore

Qk contributes to the entanglement only as far as it is a refinement of a decom-
position into states overM. Since the infimum is still achieved ifωi is pure
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overM (if M is finite dimensional so that this statement makes sense) and then
ωi (Ei (Qk)·) = ωi (Qk)ωi (·) the two definitions coincide in the finite dimensional
case. Especially also in this form Theorem 2.1 can be applied. But in the infinite
case it enables us to stop with a decomposition intoωi already at an early stage as
we will see in the following examples. First we note

Lemma 4.3. For the algebrasM = A1α Z2 ⊃ A the entanglement of any state
ω̂ satisfies E(Ä̂,M,A) ≤ ln 2.

Proof: Let A′ be an operator in the relative commutantπ (A)′ in the GNS rep-
resentation induced by the stateω overA, where we assume thatω is faithful,
i.e.,ω(A) > 0 for all positive operatorsA ∈ A. Then for any extension ˆω of ω as
state overMwe can write the elements of5(M)′ respectively of5(A)′ ⊃ II(M)′

as (
A′1 A′2V

A′2V A′1

)
∈ 5(M)′

(
A′1 A′2V
A′3 αA′4

)
∈ 5(A)′,

where the automorphismα is implemented byαA = V AV. On5(A)′ there exists
the automorphism

ᾱ

(
A′1 A′2V

A′3V A′4

)
=
(

A′4 A′3V
A′2V A′1

)
,

such thatE(A)′ = 1+ᾱ
2 A′ ∈ 5(M)′ is a conditional expectation from (5(A)′ into

5(M)′ that satisfiesE(Q) ≥ 1
2 Q. Since every state overMω̂ can be written in

the form 〈
Ä| · · · |Ä
9| · · · |9

〉
+
〈

V9| · · · V |9
VÄ| · · · V |Ä

〉
.

It follows that with 〈
0 V
V 0

〉 ∣∣∣∣V9VÄ

〉
=
∣∣∣∣Ä9

〉
the state ˆω corresponds to a state over5(A)′ for which ω̂ ◦ ᾱ = ω̂ and therefore
ω̂(E(Q)) = ω̂(Q). Together with the general estimate on the relative entropy that
S(ω | φ) < 0 if w > φ this proves the lemma. We want to calculate the entangle-
ment for special states and to find the corresponding leaf.

(a) Letω̂(M) = 〈Ä̂|M |Ä̂〉 satisfyω̂ ◦ α̂ = ω̂, i.e. we consider gauge invariant
states overM. All these states belong to the same leaf and satisfy
E(ω̂,M,A) = 0. ¤
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Proof: The set of these states is stable under linear superposition. Further with

ω̂(A) =
〈
Ä

0

∣∣∣∣ ( A1 0
0 αA1

) ∣∣∣∣Ä0
〉

, E(Q) = E

(
A′1 A′2V

A′3V A′4

)
=
(

A′1 0
0 A′1

)
,

ω̂(E(Q)A) = ω̂(Q A),

so that decompositions by projectors from5(A)′ reduce to decompositions already
inM.

(b) Consider states of the form

ŵ(M) =
〈
9| · · · |9
9| · · · |9

〉
.

All states of this form belong to the same leaf and for themE(ω̂, M,A) =
ln 2. ¤

Proof: Every vector that is dominated by ˆω can be represented by a vector
obtained by the application of some vector from5 =M′, ω̃(M) = ω̃(M

′∗M M ′)
where therefore ˜ω is now implemented by the vector(

A′1 A′2V
A′2V A′1

) ∣∣∣∣99
〉
=
∣∣∣∣ (A′1+ A′2V)9
(A′1+ A′2V)9

〉
and is therefore of the desired form. The lemma follows if for all these states we
can find an appropriate decomposition such that for allE∑

k

ω̂(Qk)S(ω̂(E(Qk)· | ω̂(Qk·) = ln 2.

Let us assume that|9〉 = C′|Ä〉 for someC′ ∈ A′ and |Ä〉 is the vector imple-
menting the tracial state onA. Take a projection inA′, P′ with αP′ = 1− P′ and
[ P′, C′] = 0. Such a projection can be found fore a dense set ofC′. Then for anyE

E

(
P′ 0
0 1− P′

)
=
(

P′ 0
0 P′

)
for some projectorP

′
.〈

Ä

Ä

∣∣∣∣ (C′∗ 0
0 C′∗

)(
A1 0
0 αA1

)(
P′ 0
0 1− P′

)(
C′ 0
0 C′

) ∣∣∣∣ÄÄ
〉

=
〈
Ä

Ä

∣∣∣∣ (C′∗C′ 0
0 C′∗C′

) ∣∣∣∣ÄÄ
〉
〈ω|A1(P′ + α(1− P′)|ω〉

= c〈Ä|A1P′|Ä〉 = ω1(A1)

for appropriately chosen operatorsA1, P′ that cluster withC′ whereas ˆω(E(Q)A)
as state overA isα invariant. Based on the Kosaki formula for the relative entropy
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with appropriate variation onA1, P′ the decomposition byP′ is as powerful as the
decomposition of the tracial state into a pure state for a two dimensional matrix
algebra and we can achieve the maximal value ln 2.

(c) We consider the state ˆωU induced by the vectors| U9
αU9 〉 with αU 6= U .

These states belong to a leaf LÃ U on which againE(ω̂U ,M,A) = ln 2. The leaves
LÃ U 6= LÃ 1. ¤

Proof: The leaf LÃ U results from the automorphismγU implemented by (U 0
0 αU )

that satisfiesγuA ⊂ A and therefore also acts as map between leaves. The leaves
have to be different because a linear superposition of two states of different leaves
dominates a state with vanishing entanglement

ω̂U + ω̂1 ≥ cU ω̂(1+ α̂).

Consider the states in the leaves that are obtained from the tracial state by operators
from

∏
(M)′, ( 1 1

1 1)+ ( 1 U ′VU ′∗
U ′VU ′∗ 1 ). In the spectral representation taking into

account thatU ′VU ′∗ 6= 1 is selfadjoint and unitary (2 1± 1
1± 2 ) we see that in some

subspace it acts as the identity and cannot break the invariance of the initial state
underα̂.

This does not implement that LÃ U and LÃ 1 have trivial intersection, e.g. we can
imagine there exists a9 such that9 andU9 are orthogonal for allU .

Collecting the results for the imbeddingA ⊂M = A1α Z2 we notice that the
amount of entanglement varies as forM0

2 ⊂ M2. But to every value of entanglement
there belong infinitely many different leaves reflecting the size of the algebra.

(B) As a completely different example we can consider the imbeddingA ⊂
M = A⊗ B where both algebrasA andB are infinite algebras. Here we have not
succeeded to find a closed expression for the entanglement. We can only define

E(ω,A⊗ B,A) = sup
n

E(ω,An ⊗ Bn,An),

whereAn andBn are finite dimensional subalgebras (Narnhofer, 2002). The supre-
mum can be replaced by taking the limit over any sequence of increasing algebras
as a consequence of the monotonicity properties of the entanglement. (Compare
Narnhofer (2002) with a more detailed analysis.) ¤

5. THE CONDITIONAL ENTROPY

Another quantitiy that behaves differently in quantum theory than in classical
theory is the conditional entropy. In classical theory it is is defined by

Hω(M | A) = S(ω)|M − S(ω)|A,
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which can be generalized to

Hω(B | A) = S(ω)|B∨A − S(ω)|A
if we do not consider imbeddings. This expression does not work in quantum
theory, on one hand by lack of monotonicity of the entropy, on the other hand
because the algebraB ∨A generated by the two subalgebras will in general be too
big. As a useful replacement one considers (Ohya and Petz, 1993)

Hω(B | A) = sup
∑

i

λi [S(ω | ωi )|B − S(ω | ωi )|A],

where the supremum is taken over all possible decompositionsω =∑i λiωi into
states overM or A ∨ B. Different from classical theory we can find states for
which

Hω(A⊗ B | A) > Hω(B | A).

The optimal decomposition forHω(B|A) asks for a delicate balance not to be too
fine forA but sufficiently fine forB. If however we concentrate on imbeddings
A ⊂M thenHω(M | A) has some analogies with the entanglement.

With

Hω(M | A) = sup
∑

i

λi [S(ω | ωi )|M − S(ω | ωi )|A],

the conditional entropy is concave inω and the supremum is achieved for pure
statesωi . This can be seen by the following observations: Refinement of the de-
composition improves the estimate because∑

i

∑
j

λi j S(ω | ωi j ) =
∑

i

∑
j

λi j S(ω | ωi )+
∑

i

∑
j

λi j S(ωi | ωi j )

and

S(ωi |ωi j )|M − S(ωi |ωi j )|A ≥ 0

forM ⊃ A. For pure statesωi∑
i

λi [S(ω | ωi )|M − S(ω | ωi )|A)] = S(ω)|M − S(ω)|A +
∑

λi S(ωi )|A.

For the last expression we have to look for the supremum instead of looking for the
infimum as we did for calculating the entanglement. We can apply a variational
principle (B. Kuemmerer and R. Werner, personal communication, 1995) that
is conclusive as long as we do not reach the boundary of the area of permitted
decompositions. This boundary will not be reached if we limit the number of
states in the decomposition sufficiently. The variation of the entropy defines a
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vector valued function (compare also Benattiet al. (1996a)

F(|φ〉) = ∂

∂ < ψ | ‖ψ‖
2S

( |φ + ψ〉〈φ + ψ |
〈φ + ψ |φ + ψ〉

)
that satisfiesF(c|φ〉) = cF(|φ〉). Together with the conditionρ =∑i λi |φi 〉〈φi |
this reduces to a kind of eigenvalue equation

F(|φi 〉)+ M(ρ)|φi 〉 = 0

with M(ρ) acting as Lagrange multiplier. Because of linearity it follows that with∑
i λi |φi 〉〈φi | being an optimal decomposition also

∑
i µi |φi 〉〈φi | is an extremal

decomposition for some ¯ρ, i.e., M(ρ) = M(ρ̄) serves as Lagrange multiplier also
for the new ¯ρ. Of course we have to keep the possibility in mind that a supremum
might change into a saddle point. Apart from this restriction we can conclude
that if a set (ωi ) is optimal with respect toω =∑i λiωi then it is also optimal
with respect to ¯ω =∑i µiωi . In this situation the conditional entropy also defines
leaves in the state space.

If we look for a compatibility condition similar as for the entanglement then
it just turns into the opposite inequality∑

i

|γi |2S(|√σi 〉〈√σi |A) +
∑
i , j

(γi γ
∗
j |
√
σi 〉〈√σ j |)+ (γ j γ

∗
i |
√
σ j 〉〈√σi |)A

ln×|√σi 〉〈√σi |A) ≥
〈∑

i

γi
√
σi |
∑

j

γ j
√
σ j

〉

×S

( |∑i γi
√
σi 〉〈

∑
j γ j
√
σ j

〈∑i γi
√
σi |
∑

j γ j
√
σ j

)
now with the restriction that may be the inequality only holds for a restricted area
of γi .

The similarity of the compatibility relation is of interest in the context of one
of the open problems in the theory of entanglement: is the entanglement additive,
i.e., is

E(ω1⊗ ω2,M1⊗M2,A1⊗A2) = E(ω1,M1,A1)+ E(ω2,M2,A2)?

Known examples support the conjecture. Also ifE(ω2,M2,A2) = 0 then equality
follows from

E(ω1 ⊗ ω2,A1⊗ B1⊗A2⊗ B2,A1⊗A2)

≥ E(ω1⊗ ω2,A1⊗ B1⊗A2,A1⊗A2)

= E(ω1⊗ ω2,A1⊗ B1⊗A2, B1)
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≥ E(ω1⊗ ω2,A1⊗ B1, B1)

= E(ω1⊗ ω2,A1⊗ B1,A1).

In a more general situation the additivity of entanglement translated to the leaf
structure to tensor products would demand that with (σ1, σ2) belonging to a leaf of
one part and (ρ1, ρ2) belonging to a leaf of the other thenσ1⊗ ρ1 andσ2⊗ ρ2 have
to belong to the same leaf in the tensor product. In the inequalityS(|∑ γi

√
σi ⊗√

ρi 〉) is the only term that does not factorize and has to be estimated on the basis of
S(|∑i γ

′
i
√
σi 〉) andS(|∑i γ

′′
i
√
ρi 〉). Such an estimate is missing so far. But it can

support additivity either for the entanglement or for the conditional entropy. But
for the conditional entropy we will give already a counter example to additivity.
This example shows that provided some relation between the entropies above exist
then it can only support additivity of the entanglement.

Example . Consider the tracial state onA⊗ B ⊗ C with A = Mn2, B = Mn,
C = Mn.

Then

Hτ (A⊗ B ⊗ C | B ⊗ C) = 4 lnn, Hτ (A⊗ B | B) = 2 lnn.

whereas withHτ (C | C) = 0 additivity would demand identity of the two expres-
sions.

At last we present a simple example where the conditional entropy can be
calculated on the basis of similar considerations as for the entanglement and really
gives a leaf structure in the state space that is in some sense opposite to the one
defined by the entanglement.

Example . ConsiderMn ⊃ M0
n = [ Pi , i = 1, . . . , n]. Takeρ = λi Pi . This state

is invariant under unitary transformationsU ∈ M0
n . Therefore we can takeM0

n =
G, the group under consideration that generates the orbit in the leaf. TakeQ a
one dimensional projector that satisfiesTr Q Pi = 1/n, e.g.,Q = 1/n|1, . . . , 1〉
〈1, . . . , 1|. The orbit of Q defines a complete set of vectors in the Hilbert space
and we can pickQ1, . . . , Qn with

∑
i Qi = 1. Therefore

√
ρQi
√
ρ decomposes

ρ and satisfies

S

(√
ρQi
√
ρ

TrρQi

)
= S(ρ).

Taking into account the concavity of the entropy we have therefore achieved the
optimal decomposition and

Hω(Mn | M0
n) = S(ω) |Mn.
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