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The Structure of State Space With Respect
to Imbedding

Heide Narnhofert

Received April 9, 2003

The entanglement of formation as well as the conditional entropy can be used to define
leaves in the state space, given by the linear superposition of their extremal points.
Examples, where these leaves can be found and can be used to calculate the entanglement
respectively the conditional entropy are presented. The definition of entanglement is
generalized to infinite systems and allows again to find a leaf structure. Finally we
remark on the additivity property of both expressions, offering a counter example to the
additivity of the conditional entropy.
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1. INTRODUCTION

The phenomenon of entanglement was already well known in the early stage
of quantum mechanics (Schroedinger, 1936). In the near past it has again gained
much interest of being a powerful resource in prospective quantum information
techniques. There exist several expressions to quantify entanglement, depending
what features should be described. One of them is entanglement of formation. It
turns out that this expression not only serves to measure the costs to produce the
entangled state (in the spirit of Benrattal. (1996b) and Haydeet al. (2001) but
also imposes a structure on the state space of the composite system, decomposing
the state space into different leaves, a structure that we expect to be useful to
evaluate strategies in quantum encoding (Benatti, 1996). Nevertheless not many
examples have been studied so far. In this review we offer strategies to evaluate
such leaves, we collect the known results and add a few additional ones. We
also compare the structure of state space induced by entanglement with a similar
one, induced by the conditional entropy. This structure is somehow opposite to
the one induced by entanglement, but is not as rigged and especially does not
satisfy additivity with respect to tensor products, a property that is one of the open
guestions in the theory of entanglement.
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2. ENTANGLEMENT OF FORMATION AND THE LEAF STRUCTURE
OF STATE SPACE

We consider our quantum system to be described by an algebra of operators
M acting on a Hilbert spack. To avoid topological subtilities we assume in this
chapter that the Hilbert space has finite dimensions. States\dvare given by
density matricep such thato(M) = TrpM. Entanglement of formation refers to
a subalgebrad c M.

Definition 2.1. Given a subalgebral ¢ M. We define the entanglement of the
statew with respect to the subalgehraby

E(w, M, A) = ianAi Swi) | A,

where the infimum is taken over all possible decompositiors ), Ajw; of the
statew into states oveM.

Remark. (i) A special example correspondstd = A ® 5, where usually the
algebraA is assigned to Alice an8l to Bob. In this situation

E(w, A® B, A) = E(w, A® B, B),

but we have also more general imbeddinggs- M in mind.

(i) The entanglement of formation is a convex functiornwoMith respect to
A itis monotonically increasing, with respectAd itis monotonically decreasing
(Narnhofer and Thirring, 1985).

(i) Since the Hilbert space is finite the infimum is really achieved. the
for which the infimum is achieved are called optimal decomposers.

The main observation that allows to impose a leaf structure on the state space
and also enables us to evaluate the entanglement for a larger set of states is the
following:

Theorem 2.1. Let f(w) be a concave function an. Let
Flo)=inf) xif(@), Y roi=o.
i i
Then the state space S decomposes into lebyé&s= U L and F is a linear
functional on a leaft, i.e.
FOwi+ (11— ANwy) = AF(w1) + (1 — M)F(w2), w1, w2 €L
Proof: From concauvity it follows that the infimum is reached at extremal points,

i.e., pure states. Linear decomposition of superpositions of states can only be better
than the linear superposition of the decompositions, which miakesvex. Based
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on this observation different superpositions of one optimal decomposition can be
compared and this gives the result (Benettal, 1996a). Also we can remember
that as a convex functiof is the supremum over affine functionals, and these
affine functionals can be labeled in our situation-hy{l(w) = F(w) for w € L,
(Benattiet al,, 2002).

We can collect some properties that these leaves have to satisfy.

(i) Let g, g € G be an automorphism group ot such thatyg.A C A and
w o ag = w. Letw belong to the leaf ). Then alsav o ag € L.

(i) We take pure states;, ..., o, and denote the corresponding vectors in
the Hilbert spacé{ by |\/o1), ..., |/on). O

Theorem 2.2. Compatibility relation (Benatti and Narnhofer, 2001). We call
statesn; andw, compatible if they belong to the same leaf.. . ., o, are extremal
points of the same leaf if and only if

D InPSIVE VoD a + D viv Ve (ail + v Ie(Vailaln
i ij

x|ﬁ><ﬁ|A)s<Zmﬁ|Zyjﬁ>
| J
XS<|ZiVI\/Fi><Zj NG

Qi noil 2 vior) )
for all possibley; € C. O
The proof can be found in (Benatti and Narnhofer, 2001). It is based on
perturbation around the optimal decomposition together with an application of
Theorem 2.1.
As a special case we consider the valges= 1, y» = ¢ all othery; = 0.
Then we can expand the inequality. Up to ordétrreduces to the equality

TriJo)(Vozl(In|J/o1)(o1| — In|/o2) (Jo2]) = 0.

Up to second order im an inequality remains, that is not much more transparent
than the general inequality. It is an open problem whether the above inequality
cannot be reduced to a smaller setyof e.g., if the compatibility of all pairs of
pure statesy; = Ofor all but two elements) guarantees already that the pure states
generate a leaf. So far no counterexample is known, and in the next chapter we
will offer an example where the leaf is really found on the basis of this assumption.

3. FINITE DIMENSIONAL EXAMPLES

(A) The simplest example is provided byt = M, ® M?, whereM, is an
dimensional full matrix algebra and? an abelian algebra of dimensi@nThen
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any state» can be decomposed into= Z:‘zl Moy With @ a pure state oM? - wy
can further be decomposed into pure states derTherefore

E(wM, Mp) = E(w, M, M0) =0

and the state space consists only of one leaf, all pure states being compatible.

(B) WetakeM = MyandA = M9 = {o} with the notation of Pauli matrices.
Every state oveM, corresponds to a density matrix . We choose the special
statesw with w o @ = w, whereq is the automorphismo; = —o3, oy = oy. If
|21, 22) is an optimal decomposer so|®, z;). To every aboves we can find an
appropriate pair of such states and can convince us that this pair satisfies the nec-
essary compatibility relation (Benadt al,, 1996a). Therefore the corresponding
leaf consists of the orbit under of one state and further more the whole state
space can be covered by these leaves after rotation iythgace.

This example provides us with a possible strategy to search for optimal de-
compositions, though it is only applicable if we want to decompose a state with
good symmetry properties.

Assumew o g = wVg € G. We look for a pure state» such thatw =
J dngw o ag, i.e., we look for a state whose orbit under the symmetry group
generates the leaf. If the group is large the orbit might be large too, therefore
the compatibility condition (Theorem 2.2) might be too demanding on the many
w o ag. Therefore we look for a subgroup C G such thaw o e = wVh € H.
Therefore the orbit reduces ® | H and should be small enough to satisfy all
compatibility relations but large enough to generateln addition we have to
be aware that the leaf might be generated by several orbits. That this strategy
can be successful but that all possibilities we mentioned can be realized will be
demonstrated in the following example:

(C) We takeM = M3z and A = Mg. The relevant group is the permutation
group which is of order 6. The stateso o, = w are labeled by one parameter,
w(e;) = 1/3,w(g;) = zfori # jand—1/6 < z < 1/3 sothatthe state is positive.
For an optimal decomposition we need at least three states, at most nine. If three
states are sufficient, the pure state has to be invariant under a sulbyroup, e.g.,
without loss of generality we take the permutations (2, 3). This fixes the possible
pure state uniquely depending on z. But it turns out (Beeati. 1996b, 1999)
that this decomposition is not always optimal. We have two bifurcation points
(Benattiet al, 2002; Terhal and Vollbrecht, 2000)1/6 < zo < 0< z; < 1/3.

This is a result of numerical analysis but can be made plausible by the following
observation:

For z = O the tracial state can be decomposed into eigenvectdvi)pthus
one state corresponds to (1, 0, 0) and gives entangleB(en) = 0. Forz = 1/3
the state is already pure and the corresponding vectgri8(L, 1, 1)= /3. For
z= —1/6itiseasytofindthal_i6 = 1/4/2(1,—1, 0) is an optimal decomposer.
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Here the state is invariant under the grddpbut not the vector, only its ray. It

is possible to pass continuously frofm,s to ¥ remaining a fix point ofH but

not from 1o to ¥_1/6. This explains that a bifurcation value has to occur. The
accurate value varies if we vary the concave functigw) in Theorem 2.1 and
can therefore not be explained by general arguments. The bifurcationzpdént

of different nature. Here we do not break the symmetridfut we start to need
two orbits with varying weight. This bifurcation point can be found by a mapping
r: My, —» Mg;Mg—> Mg

a c¢/2 c¢/2 a
(a g)—> c/2 b/2 b)2 (a>—> b2
¢ c/2 b2 bj2) \°© b/2

Every decomposition df'(p) is again into density matrices of the above form and
satisfies especially th&T (w;)) Mg has the same monotonicity behavior with re-
spect to the relevant parametersss;) |- Therefore an optimal decomposition
over M, can be mapped into an optimal decomposition dMgr Especially

r'1/v/3(1,v2) = 1/v/3(1, 1, 1), T'1/v/3(+2,1)=1/v/6(2,1, 1)

These two vectors combine in three-dimensional case to a leaf, but they also belong
to the leaf that is defined layy 3 respectively to the leaf defined by, . Their orbits

under the permutation group generate the leaf fopalky < z < 1/3 which can

be checked by comparing with a decomposition of just one orbiiferz < 1/3.

This example is in support to the conjecture that a leaf is determined by the pairs
of its extremal points. (Compare the remark after Theorem 2.2.)

4. INFINITE ALGEBRAS

Though in quantum information theory normally one restricts oneself to finite
dimensional algebras it seems worthwhile to examine how increasing dimensions
might influence the structure and especially whether similar considerations also
give some insight when infinite algebras are imbedded in one another. In this
situation the first problem arises in the definition of the entanglement, qualitatively
and quantitatively, because pure states on infinite von Neumann algebras do not
exist.

(A) Let us first consider a simple imbedding: Jéte a type I} factor algebra
anda a free automorphism (therefore not an inner automorphism) afite: 1
and.4 imbedded into the algebr&! = A, Z?, i.e., the crossed product of the
algebraA with the automorphisra and by the assumptions again a typddictor.

A physical realization is given with\1 the algebra of infinitely many fermions
and.A the subalgebra of even polynomials in creation and annihilation operators
wherea is induced by someag + aj). We can write elements o¥1 respectively



960 Narnhofer

of A conveniently as

(A A
M= (O[Ag O[Al) ’
whereA;, A; belongs ta4, and A is imbedded intd4 by demanding thag&, = 0.
On M we can define an automorphism ~

sMeal Bt PV A A

« =« OlAz OlAl B —O(A2 (XA]_ '
so thatA is the fix point algebra under. Notice that the automorphiscan now
be implemented by either of the operators

(o v)o(3 o)

where for the first operatdr ¢ A but the later operator belongs ta.

To find a definition for the entanglement let us recall the definitions in
the finite case: the entropy itself can be written (Narnhofer and Thirring, 1985)
as

S(@) =supy S | @), ©=) ik,
K K

where the supremum is taken over all possible decomposition and is reached for
every decomposition into pure states. The entanglement then reads

M A
E(w, M, A) = inf Zui SUPZ Mi Swi | wik).
i K

Herew = ) ujw; is decomposed into states oudf whereasw; = Y Aikwik

is decomposed into states ovdr Every decomposition results from a positive
operator in the relative commutant of a representation in which the state is given
as expectation value with a vector

w(A) = (QUIT(A)Q) wk(A) = (QQkII(A)[L),

whereQy € TI(A), Qx > 0. We can now replace the definition of the entanglement
by

M A
E(w, M, A) =inf )" uisupy inf wi (Qu) (@i (Ei (Q)-) i (Q-))l.a,
i k '

where we stay in a common representation foegllHere E; (Qy) is anw; pre-
serving completely positive map froifi(A)’ into I1(M) and the supremum is
taken over all decompositions, Qi = 1 of operatory > 0 € (A)'. Therefore

Qx contributes to the entanglement only as far as it is a refinement of a decom-
position into states oveM. Since the infimum is still achieved i is pure
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over M (if M is finite dimensional so that this statement makes sense) and then
i (Ei (Qk)-) = wi (Qk)wi(+) the two definitions coincide in the finite dimensional
case. Especially also in this form Theorem 2.1 can be applied. But in the infinite
case it enables us to stop with a decompositionditalready at an early stage as
we will see in the following examples. First we note

Lemma4.3. Forthe algebrasM = A, Z? > Athe entanglement of any state
o satisfies EQ, M, A) <In 2.

Proof: Let A’ be an operator in the relative commutar{t4d)’ in the GNS rep-
resentation induced by the stateover .4, where we assume that is faithful,
i.e.,w(A) > 0 for all positive operator# < A. Then for any extension 6f w as
state overM we can write the elements Bf(M)’ respectively of1(A)’ > (MY
as

AV A A, oA,

where the automorphismis implemented by A = V AV. OnII(A) there exists

the automorphism
(% M) - (5 %),
AV A, AV A

such thatE(A) = %A/ € T1(M) is a conditional expectation fronfiI{ A)" into
[1(M)' that satisfieE(Q) > %Q. Since every state oveY® can be written in

the form
Q - IR N V¥| ... V|V
Ul o W Vel - VIQ/
It follows that with
0 V\|vu\ |Q
vV of/|lvae/ |wv

the statev"corresponds to a state ovE(.A)’ for which® o @ = @ and therefore
»(E(Q)) = &(Q). Together with the general estimate on the relative entropy that
Sw | ¢) < 0if w > ¢ this proves the lemma. We want to calculate the entangle-
ment for special states and to find the corresponding leaf.

(@) Letd(M) = (Q|M|Q) satisfysd o @ = &, i.e. we consider gauge invariant
states over M. All these states belong to the same leaf and satisfy
E(®, M, A)=0. O

<A’1 A/ZV)GH(M)/(A& Aév)el'[(A)/,
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Proof: The set of these states is stable under linear superposition. Further with

~ Q A 0 Q A AV Al 0
‘”‘A’:<0‘<01 aA1>‘0>’E‘Q’:E(A§v /iz):<01 Aa)'
®(E(Q)A) = o(QA),

sothat decompositions by projectors froba4)’ reduce to decompositions already
in M.
(b) Consider states of the form

R e

won = (50
All states of this form belong to the same leaf and for thBifw, M, A) =
In2. O

Proof. Every vector that is dominated hy ¢an be represented by a vector
obtained by the application of some vector frém= M’, &(M) = @(M*MM")
where therefore is now implemented by the vector
A AV W _ (AL + AL V)W
AV A \ (AL + A V)W
and is therefore of the desired form. The lemma follows if for all these states we
can find an appropriate decomposition such that foEall

Z&)(Qk)s(&)(E(Qk)' | ®(Qx) =In2.

k

Let us assume thatr) = C’|Q2) for someC’ € A’ and|2) is the vector imple-
menting the tracial state o#. Take a projection ind’, P’ withaP’ =1 — P’ and
[P’, C’] = 0. Such a projection can be found fore a dense s&t.ofhen for anye

(P 0 \_(P O
0o 1-P ) \o 7
for some projectoP .
Qi/C* 0 A; O P’ 0 c o Q
Q 0o C* 0 oA 0 1-F 0 CJ)|Q

Q| [CcHC 0 Q
Q 0 c=c’

Q
C(Q|ALP'|Q) = wi1(A1)

><w|A1(P/ +a(l- P)o)

for appropriately chosen operatokg, P’ that cluster withC’ whereaso{E(Q) A)
as state overl is « invariant. Based on the Kosaki formula for the relative entropy
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with appropriate variation oA, P’ the decomposition b’ is as powerful as the
decomposition of the tracial state into a pure state for a two dimensional matrix
algebra and we can achieve the maximal value In 2.

(c) We consider the statey“induced by the vectorsauu‘lfp> with aU #£ U.

These states belong to a leaf bn which agairE(oy, M, A) = In 2. The leaves
Ly * L. O

Proof: The leafly results from the automorphispy implemented bylé a%)

that satisfiesy.A C A and therefore also acts as map between leaves. The leaves
have to be different because a linear superposition of two states of different leaves
dominates a state with vanishing entanglement

oy + o1 > cyo(l+ Q).

Consider the states in the leaves that are obtained from the tracial state by operators
from[JM), 3 1)+ (uvu- Y4Y"). In the spectral representation taking into

accountthatl’v U™* # 1 s selfadjoint and unitary,f. '3 !) we see thatin some
subspace it acts as the identity and cannot break the invariance of the initial state
underd.

This does not implement thagland-l; have trivial intersection, e.g. we can
imagine there exists & such thatl andU W are orthogonal for alU .

Collecting the results for the imbeddingc M = A x, Z2we notice thatthe
amount of entanglementvaries askb§ C M,. Butto every value of entanglement
there belong infinitely many different leaves reflecting the size of the algebra.

(B) As a completely different example we can consider the imbeddirg
M = A ® Bwhere both algebrad andB are infinite algebras. Here we have not
succeeded to find a closed expression for the entanglement. We can only define

E(w, A® B, A) = SUpE((X), An ® Bn, An),
n

whereA, andB;, are finite dimensional subalgebras (Narnhofer, 2002). The supre-
mum can be replaced by taking the limit over any sequence of increasing algebras
as a consequence of the monotonicity properties of the entanglement. (Compare
Narnhofer (2002) with a more detailed analysis.) O

5. THE CONDITIONAL ENTROPY

Another quantitiy that behaves differently in quantum theory than in classical
theory is the conditional entropy. In classical theory it is is defined by

Ho(M | A) = S@)lm — S()]a,
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which can be generalized to

Ho(B | A) = S(@)Isva — S(@)| 4

if we do not consider imbeddings. This expression does not work in quantum
theory, on one hand by lack of monotonicity of the entropy, on the other hand
because the algebtav .4 generated by the two subalgebras will in general be too
big. As a useful replacement one considers (Ohya and Petz, 1993)

Ho(B | A) = SUPZ Li[S(@ | wi)ls — Yo | wi)lal,

where the supremum is taken over all possible decomposiicasy ; Ajw;i into
states ovetM or A v 5. Different from classical theory we can find states for
which

Ho(A® B | A)> H,(B | A).

The optimal decomposition fdf,,(B|.4) asks for a delicate balance not to be too
fine for A but sufficiently fine forB. If however we concentrate on imbeddings
A c M thenH,(M | A) has some analogies with the entanglement.

With

Hy(M | A) = sup) | Ai[S( | @i)lm — S | )],

the conditional entropy is concave anand the supremum is achieved for pure
statesw;. This can be seen by the following observations: Refinement of the de-
composition improves the estimate because

DY kSl =) > miSelw)+ Y > kS | o))
5 5 5
and

S(wi|wij)|m — S(wilwij)la =0
for M D A. For pure states)

D MlS@ L o)lv = S | )] = S@)la — S@)la+ Y4 Sei)la.

For the last expression we have to look for the supremum instead of looking for the
infimum as we did for calculating the entanglement. We can apply a variational
principle (B. Kuemmerer and R. Werner, personal communication, 1995) that
is conclusive as long as we do not reach the boundary of the area of permitted
decompositions. This boundary will not be reached if we limit the number of
states in the decomposition sufficiently. The variation of the entropy defines a
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vector valued function (compare also Benattal. (1996a)

d
_ ||Mzs<|¢>+w><¢>+1/f|>
I < 9yl @+ Vi +y)

that satisfied(c|¢)) = cF(|¢)). Together with the conditiop = }; Ail¢i) (il
this reduces to a kind of eigenvalue equation

F(l¢i) + M(p)l¢i) =0

with M(p) acting as Lagrange multiplier. Because of linearity it follows that with
> Ailei)(¢i| being an optimal decomposition al3g; wi|¢i)(¢i| is an extremal
decomposition for somg, i.e., M(p) = M(p) serves as Lagrange multiplier also
for the newp. Of course we have to keep the possibility in mind that a supremum
might change into a saddle point. Apart from this restriction we can conclude
that if a set ;) is optimal with respect ta = ) _; Ajw; then it is also optimal
with respecttav = >, uiwi. In this situation the conditional entropy also defines
leaves in the state space.

If we look for a compatibility condition similar as for the entanglement then
it just turns into the opposite inequality

Y I PSIVE (Vaila) + Y (v Ve a) + i 1VET) (Vi) a
i i

F(l¢)

In x|/01)(V/0i|.4) = <Znﬁ|2yjﬁ>
i j

S DIRINCIIONSINC
R INCADNSINC
now with the restriction that may be the inequality only holds for a restricted area
of .
The similarity of the compatibility relation is of interest in the context of one
of the open problems in the theory of entanglement: is the entanglement additive,
i.e. is
E(w1 ® w2, M1 ® Mp, A1 ® Az) = E(w1, M1, A1) + E(wz, M2, A)?

Known examples support the conjecture. AlsB{fv,, M>, A2) = 0then equality
follows from

E(wi ® w2, 21 @ B1® A ® By, A1 ® A))

E(w1 ® w2, A1 @ B1 @ Az, A1 ® Ap)
E(w1 ® w2, A1 ® B1 @ A, B1)

v
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v

E(w1 ® w2, A1 ® B1, B1)
= E(w1 ® w2, A1 ® By, Az1).

In a more general situation the additivity of entanglement translated to the leaf
structure to tensor products would demand that with §») belonging to a leaf of

one part anddi, p2) belonging to a leaf of the other then ® p; ando, ® p2 have

to belong to the same leaf in the tensor product. In the inequa(ity_ i ./oi ®
J/pi))isthe only term that does not factorize and has to be estimated on the basis of
S5 v /o)) andS(| D v /ei))- Such an estimate is missing so far. But it can
support additivity either for the entanglement or for the conditional entropy. But
for the conditional entropy we will give already a counter example to additivity.
This example shows that provided some relation between the entropies above exist
then it can only support additivity of the entanglement.

Example . Consider the tracial state ad ® B® C with A = M2, B = M,
C = M,.
Then

HARKBRXC|BRC)=4Inn, H(A® B|B)=2Inn.

whereas withH, (C | C) = 0 additivity would demand identity of the two expres-
sions.

At last we present a simple example where the conditional entropy can be
calculated on the basis of similar considerations as for the entanglement and really
gives a leaf structure in the state space that is in some sense opposite to the one
defined by the entanglement.

Example. ConsiderM, > Mr? =[R,i =1,...,n]. Take p = A; P,.. This state

is invariant under unitary transformatioblse M?. Therefore we can takil? =

G, the group under consideration that generates the orbit in the leaf.Qake
one dimensional projector that satisfietsQR = 1/n, e.g.,Q =1/n|1,..., 1)
(1,...,1]. The orbit of Q defines a complete set of vectors in the Hilbert space
and we can piclQy, ..., Qy with ), Q; = 1. Therefore,/pQ; ,/p decomposes

p and satisfies

Taking into account the concavity of the entropy we have therefore achieved the
optimal decomposition and

Ho(Mn | MQ) = ) |wm,-
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